martes, 24 de marzo de 2009

Zonas Climáticas 4.Klasse. Herr Cruz

ZONAS CLIMÁTICAS DE LA TIERRA

En la tierra existen dos zonas frías (en los Polos), dos templadas y una cálida. España está situada en la zona templada del Norte, como puedes apreciar en el mapa. Las regiones que están en la zona cálida, tienen temperaturas muy altas durante todo el año. En ella abundan los desiertos. Las regiones que están en las zonas frías, tienen temperaturas muy bajas durante todo el año y casi no existe vegetación. En las zonas templadas, las temperaturas son moderadas, suben un poco en verano y bajan en invierno.

Los climas de la Tierra
El clima de una zona determinada depende en parte de su latitud (es decir, de su distancia al ecuador). Las regiones próximas al ecuador son las más calurosas. Cuanto más alejados del ecuador, más frío es el clima. Los lugares más fríos del mundo son las regiones polares, situadas en torno a los polos Norte y Sur. El clima se ve también afectado por la proximidad del mar. La temperatura del mar calienta o refresca la tierra próxima a él, por lo que las regiones costeras suelen tener temperaturas mucho menos extremas que las zonas del centro de los continentes. Otro factor importante es la altitud, o sea, la altura de un lugar respecto al nivel del mar. Cuanto más elevado, más frío es su clima.

En nuestro Planeta Tierra existen cuatro zonas climáticas diferentes. Estas cuatro zonas son: las zonas polares, zonas templadas, zona de convergencia intertropical y zonas tropicales.
Sabemos que en diferentes partes del Planeta Tierra podemos encontrar climas característicos de cada zona, pero nos debemos preguntar qué causa estas diferencias y cuáles son las diferencias en cada zona. Primeramente podemos mencionar que las zonas climáticas son causadas por el calentamiento desigual que ocasiona la esfericidad de la Tierra. Por la forma esférica de la Tierra y la rotación que ésta hace en su órbita alrededor del Sol, llamada traslación, hay zonas que reciben más directamente los rayos del sol y otras que lo reciben muy indirectamente, como por ejemplo, las zonas polares. Éstas se caracterizan por tener temperaturas muy bajas durante todo el año. En algunos momentos del año las zonas polares experimentan periodos de luz o de oscuridad por lo menos de 24 horas. Se suele hablar de desiertos fríos, a pesar de que se mantengan cubiertos por hielos y nieve, ya que en estas zonas llueve muy poco, menos de 250 mm anuales. Las próximas zonas que describiré serán las zonas templadas. Estas zonas se encuentran situadas al norte (hemisferio norte) o al sur (hemisferio sur) de las zonas tropicales. En estas zonas las estaciones del año están bien marcadas ya que el eje de la Tierra tiene una inclinación de 23̊ y hace que en el transcurso de la traslación de la Tierra estas zonas experimenten variación en su clima durante las diferentes estaciones. Otra zona de nuestro planeta Tierra es la zona de convergencia intertropical, que también la podemos llamar zona ecuatorial porque se encuentra cerca del ecuador. En esta zona lleve prácticamente todos los días al atardecer. La abundancia de lluvias y las elevadas temperaturas favorecen el desarrollo de la vegetación y es en esta zona en la que se desarrollan los grandes bosques selváticos. Esta zona climática no se sitúa a lo largo de todo el año en el mismo sitio, sino que sufre desplazamientos hacia el norte o hacia el sur, dependiendo de las estaciones o empujada por los vientos monzones, que son especialmente fuertes en el sur de Asia. Por último pero no menos importantes, ya que es la zona donde se encuentra mi país, Puerto Rico, son las zonas tropicales. Las zonas tropicales se encuentran al norte y al sur de la zona de convergencia intertropical. Experimenta precipitaciones escasas, normalmente inferiores a los 250 mm anuales, ya que la circulación vertical descendente impide el desarrollo de nubes, pues el aire al bajar aumenta su temperatura y por tanto aumenta su capacidad de contener vapor de agua (mayor humedad de saturación). Por esto en estas zonas hay grandes extensiones desérticas en los continentes, tanto en el hemisferio norte como en el sur. Sus temperaturas son cálidas con pocas diferencias entre los periodos de luz y oscuridad.
Por las temperaturas extremas que producen las zonas polares y por la diferencia tan drástica en las temperaturas que experimentan las zonas templadas, puedo llegar a la conclusión de pensar que la zona de convergencia intertropical y las zonas tropicales disfrutan de una estabilidad climatológica que nos permite a nosotros, los habitantes, acostumbrarnos a un tipo de clima y de esta manera nuestra salud física y económica. Por ejemplo en las zonas templadas las personas habitantes de estos lugares tienen que prepararse de manera diferente para sus diferentes estaciones. Durante el verano la ropa es muy diferente al invierno, al igual que los preparativos en sus hogares para aguantar calor o frío. En nuestra zona por ejemplo, al mantener un clima muy parecido durante todo el año podemos utilizar un mismo tipo de ropa y los mismos sistemas en nuestras casas, por ejemplo aires acondicionados y no calefacción durante todo el año. Claro está, tenemos que tener en cuenta que todo esto es cuestión de cultura y que muchos pensarán que les gusta más vivir en las zonas templadas o polares.

Todo lo que nos rodea es "Materia" 6.Klasse. Herr Cruz

Materia

Definición: Materia es todo lo que tiene masa y ocupa un lugar en el espacio

La Química es la ciencia que estudia su naturaleza, composición y transformación.
Las nubes son materia.
Si la materia tiene masa y ocupa un lugar en el espacio significa que es cuantificable, es decir, que se puede medir.
Todo cuanto podemos imaginar, desde un libro, un auto, el computador y hasta la silla en que nos sentamos y el agua que bebemos, o incluso algo intangible como el aire que respiramos, está hecho de materia.
Los planetas del Universo, los seres vivos como los insectos y los objetos inanimados como las rocas, están también hechos de materia.
De acuerdo a estos ejemplos, en el mundo natural existen distintos tipos de materia, la cual puede estar constituida por dos o más materiales diferentes, tales como la leche, la madera, un trozo de granito, el azúcar, etc. Si un trozo de granito se muele, se obtienen diferentes tipos de materiales
La cantidad de materia de un cuerpo viene dada por su masa, la cual se mide normalmente en kilogramos o en unidades múltiplo o submúltiplo de ésta (en química, a menudo se mide en gramos). La masa representa una medida de la inercia o resistencia que opone un cuerpo a acelerarse cuando se halla sometido a una fuerza. Esta fuerza puede derivarse del campo gravitatorio terrestre, y en este caso se denomina peso. (La masa y el peso se confunden a menudo en el lenguaje corriente; no son sinónimos).
Volumen de un cuerpo es el lugar o espacio que ocupa. Existen cuerpos de muy diversos tamaños. Para expresar el volumen de un cuerpo se utiliza el metro cúbico (m³) y demás múltiplos y submúltiplos.

Composición de la materia
Átomos forman la materia
La materia está integrada por átomos, partículas diminutas que, a su vez, se componen de otras aún más pequeñas, llamadas partículas subatómicas, las cuales se agrupan para constituir los diferentes objetos.
Un átomo es la menor cantidad de un elemento químico que tiene existencia propia y puede entrar en combinación. Está constituido por un núcleo, en el cual se hallan los protones y neutrones y una corteza, donde se encuentran los electrones. Cuando el número de protones del núcleo es igual al de electrones de la corteza, el átomo se encuentra en estado eléctricamente neutro.
Se denomina número atómico al número de protones que existen en el núcleo del átomo de un elemento. Si un átomo pierde o gana uno o más electrones adquiere carga positiva o negativa, convirtiéndose en un ion. Los iones se denominan cationes si tienen carga positiva y aniones si tienen carga negativa.
La mayoría de los científicos cree que toda la materia contenida en el Universo se creó en una explosión denominada Big Bang, que desprendió una enorme cantidad de calor y de energía. Al cabo de unos pocos segundos, algunos de los haces de energía se transformaron en partículas diminutas que, a su vez, se convirtieron en los átomos que integran el Universo en que vivimos.
En la naturaleza los átomos se combinan formando las moléculas. Una molécula es una agrupación de dos o más átomos unidos mediante enlaces químicos. La molécula es la mínima cantidad de una sustancia que puede existir en estado libre conservando todas sus propiedades químicas.
Todas las sustancias están formadas por moléculas. Una molécula puede estar formada por un átomo (monoatómica), por dos átomos (diatómica), por tres átomos (triatómica) o más átomos (poliatómica)
Las moléculas de los cuerpos simples están formadas por uno o más átomos idénticos (es decir, de la misma clase). Las moléculas de los compuestos químicos están formadas al menos por dos átomos de distinta clase (o sea, de distintos elementos).
Continuidad de la materia
Si se tiene una determinada cantidad de una sustancia cualquiera, como por ejemplo, de agua y se desea dividirla lo más posible, en mitades sucesivas, llegará un momento en que no podrá dividirse más, ya que se obtendría la cantidad más pequeña de agua.
Esta mínima cantidad de agua, tal como se dijo anteriormente, corresponde a una molécula. Si esta molécula se dividiera aún más, ya no sería agua lo que se obtendría, sino que átomos de hidrógeno y de oxígeno que son los constituyentes de la molécula de agua.
Por lo tanto, una molécula es la partícula de materia más pequeña que puede existir como sustancia compuesta. Cuando la molécula de agua: (H2O) se divide en dos átomos de hidrógeno y un átomo de oxígeno, la sustancia dejó de ser agua.
Los científicos han demostrado que la materia, sea cual fuere su estado físico, es de naturaleza corpuscular, es decir, la materia está compuesta por partículas pequeñas, separadas unas de otras.

Elementos, compuestos y mezclas
Las sustancias que conforman la materia se pueden clasificar en elementos, compuestos y mezclas.
Los elementos son sustancias que están constituidas por átomos iguales, o sea de la misma naturaleza. Por ejemplo: hierro, oro, plata, calcio, etc. Los compuestos están constituidos por átomos diferentes.
El agua y el hidrógeno son ejemplos de sustancias puras. El agua es un compuesto mientras que el hidrógeno es un elemento. El agua está constituida por dos átomos de hidrógeno y uno de oxígeno y el hidrógeno únicamente por dos átomos de hidrógeno.
Si se somete el agua a cambios de estado, su composición no varía porque es una sustancia pura, pero si se somete a cambios químicos el agua se puede descomponer en átomos de hidrógeno y de oxígeno. Con el hidrógeno no se puede hacer lo mismo. Si se somete al calor, la molécula seguirá estando constituida por átomos de hidrógeno. Si se intenta separarla por medios químicos siempre se obtendrá hidrógeno.
En la naturaleza existen más de cien elementos químicos conocidos (Ver Tabla Periódica de los Elementos) y más de un millón de compuestos.
Las mezclas se obtienen de la combinación de dos o más sustancias que pueden ser elementos o compuestos. En las mezclas no se establecen enlaces químicos entre los componentes de la mezcla. Las mezclas pueden ser homogéneas o heterogéneas.
Las mezclas homogéneas son aquellas en las cuales todos sus componentes están distribuidos uniformemente, es decir, la concentración es la misma en toda la mezcla, en otras palabras en la mezcla hay una sola fase. Ejemplos de mezclas homogéneas son la limonada, sal disuelta en agua, etc. Este tipo de mezcla se denomina solución o disolución.
Las mezclas heterogéneas son aquellas en las que sus componentes no están distribuidos uniformemente en toda la mezcla, es decir, hay más de una fase; cada una de ellas mantiene sus características. Ejemplo de este tipo de mezcla es el agua con el aceite, arena disuelta en agua, etc; en ambos ejemplos se aprecia que por más que se intente disolver una sustancia en otra siempre pasado un determinado tiempo se separan y cada una mantiene sus características.

Propiedades de la materia
Las propiedades de la materia corresponden a las características específicas por las cuales una sustancia determinada puede distinguirse de otra. Estas propiedades pueden clasificarse en dos grupos:
Propiedades físicas: ependen fundamentalmente de la sustancia misma. Pueden citarse como ejemplo el color, el olor, la textura, el sabor, etc.
Propiedades químicas: dependen del comportamiento de la materia frente a otras sustancias. Por ejemplo, la oxidación de un clavo (está constituido de hierro).
Las propiedades físicas pueden clasificarse a su vez en dos grupos:
Propiedades físicas extensivas: dependen de la cantidad de materia presente. Corresponden a la masa, el volumen, la longitud.
Propiedades físicas intensivas: dependen sólo del material, independientemente de la cantidad que se tenga, del volumen que ocupe, etc. Por ejemplo, un litro de agua tiene la misma densidad que cien litros de agua.

Estados físicos de la materia
En condiciones no extremas de temperatura, la materia puede presentarse en tres estados físicos diferentes: estado sólido, estado líquido y estado gaseoso.
Los sólidos poseen forma propia como consecuencia de su rigidez y su resistencia a cualquier deformación. La densidad de los sólidos es en general muy poco superior a la de los líquidos, de manera que no puede pensarse que esa rigidez característica de los sólidos sea debida a una mayor proximidad de sus moléculas; además, incluso existen sólidos como el hielo que son menos densos que el líquido del cual provienen. Además ocupan un determinado volumen y se dilatan al aumentar la temperatura.
Esa rigidez se debe a que las unidades estructurales de los sólidos, los átomos, moléculas y iones, no pueden moverse libremente en forma caótica como las moléculas de los gases o, en menor grado, de los líquidos, sino que se encuentran en posiciones fijas y sólo pueden vibrar en torno a esas posiciones fijas, que se encuentran distribuidas, de acuerdo con un esquema de ordenación, en las tres direcciones del espacio.
La estructura periódica a que da lugar la distribución espacial de los elementos constitutivos del cuerpo se denomina estructura cristalina, y el sólido resultante, limitado por caras planas paralelas, se denomina cristal. Así, pues, cuando hablamos de estado sólido, estamos hablando realmente de estado cristalino.
Los líquidos se caracterizan por tener un volumen propio, adaptarse a la forma de la vasija en que están contenidos, poder fluir, ser muy poco compresibles y poder pasar al estado de vapor a cualquier temperatura. Son muy poco compresibles bajo presión, debido a que, a diferencia de lo que ocurre en el caso de los gases, en los líquidos la distancia media entre las moléculas es muy pequeña y, así, si se reduce aún más, se originan intensas fuerzas repulsivas entre las moléculas del líquido.
El hecho de que los líquidos ocupen volúmenes propios demuestra que las fuerzas de cohesión entre sus moléculas son elevadas, mucho mayores que en el caso de los gases, pero también mucho menores que en el caso de los sólidos. Las moléculas de los líquidos no pueden difundirse libremente como las de los gases, pero las que poseen mayor energía cinética pueden vencer las fuerzas de cohesión y escapar de la superficie del líquido (evaporación).
Los gases se caracterizan porque llenan completamente el espacio en el que están encerrados. Si el recipiente aumenta de volumen el gas ocupa inmediatamente el nuevo espacio, y esto es posible sólo porque existe una fuerza dirigida desde el seno del gas hacia las paredes del recipiente que lo contiene. Esa fuerza por unidad de superficie es la presión.
Los gases son fácilmente compresibles y capaces de expansionarse indefinidamente.
Los cuerpos pueden cambiar de estado al variar la presión y la temperatura. El agua en la naturaleza cambia de estado al modificarse la temperatura; se presenta en estado sólido, como nieve o hielo, como líquido y en estado gaseoso como vapor de agua (nubes).
Materia viva e inerte
La Tierra alberga a muchos seres vivos, como son las plantas y animales. Una mariposa parece algo muy distinto de una piedra; sin embargo, ambas están compuestas de átomos, aunque éstos se combinan de manera diferente en uno y otro caso. Lamayor parte de la materia es inanimada; es decir, no crece, ni se reproduce, ni se mueve por sí misma. Un buen ejemplo de materia inanimada lo constituyen las rocas que componen la Tierra.

Cambios de la materia
Los cambios que puede experimentar la materia se pueden agrupar en dos campos:

Cambios químicos
Los cambios físicos son aquellos en los que no hay ninguna alteración o cambio en la composición de la sustancia. Pueden citarse como cambios físicos los cambios de estado (fusión, evaporación, sublimación, etc.), y los cambios de tamaño o forma. Por ejemplo, cuando un trozo de plata se ha transformado en una anillo, en una bandeja de plata, en unos aretes, se han producido cambios físicos porque la plata mantiene sus propiedades en los diferentes objetos.
En general, los cambios físicos son reversibles, es decir, se puede volver a obtener la sustancia en su forma inicial
Los cambios químicos son las transformaciones que experimenta una sustancia cuando su estructura y composición varían, dando lugar a la formación de una o más sustancias nuevas. La sustancia se transforma en otra u otras sustancias diferentes a la original.
El origen de una nueva sustancia significa que ha ocurrido un reordenamiento de los electrones dentro de los átomos, y se han creado nuevos enlaces químicos. Estos enlaces químicos determinarán las propiedades de la nueva sustancia o sustancias.
La mayoría de los cambios químicos son irreversibles. Ejemplos: al quemar un papel no podemos obtenerlo nuevamente a partir de las cenizas y los gases que se liberan en la combustión; el cobre se oxida en presencia de oxígeno formando otra sustancia llamada óxido de cobre. Sin embargo, hay otros cambios químicos en que la adición de otra sustancia provoca la obtención de la sustancia original y en este caso se trata de un cambio químico reversible; así, pues, para provocar un cambio químico reversible hay que provocar otro cambio químico.

Cambios de estados físicos
La materia cambia de estado físico según se le aplique calor o se le aplique frío.
Cuando se aplica calor a los cuerpos se habla de Cambios de estado Progresivos de la materia. Cuandolos cuerpos se enfrían se habla de Cambios de estado Regresivos.
Los cambios de estado progresivos son:
• Sublimación Progresiva
• Fusión
• Evaporación
1. Sublimación progresiva: Este cambio se produce cuando un cuerpo pasa del estado sólido al gaseoso directamente. La sublimación progresiva sólo ocurre en algunas sustancias, como, el yodo y la naftalina.
2. Fusión. Es el paso de una sustancia, del estado sólido al líquido por la acción del calor. La temperatura a la que se produce la fusión es característica de cada sustancia. Por ejemplo la temperatura a la que ocurre la fusión del hielo es O° C mientras la del hierro es de 1.525° C. La temperatura constante a la que ocurre la fusión se denomina punto de fusión.
3. Evaporación. Es el paso de una sustancia desde el estado líquido al gaseoso. Este cambio de estado ocurre normalmente a la temperatura ambiente, y sin necesidad de aplicar calor. Bajo esas condiciones, sólo las partículas de la superficie del líquido pasarán al estado gaseoso, mientras que aquéllas que están más abajo seguirán en el estado inicial. Sin embargo, si se aplica mayor calor, tanto las partículas de la superficie como las del interior del líquido podrán pasar al estado gaseoso. El cambio de estado así producido se denomina ebullición. La temperatura que cada sustancia necesita para alcanzar la ebullición es característica, y se denomina punto de ebullición. Por ejemplo, al nivel del mar el alcohol tiene un punto de ebullición de 78,5° C y el agua de 100°C.
La temperatura a la que ocurre la fusión o la ebullición de una sustancia es un valor constante, es independiente de la cantidad de sustancia y no varía aún cuando ésta continúe calentándose.
El punto de fusión y el punto de ebullición pueden considerarse como las huellas digitales de una sustancia, puesto que corresponden a valores característicos, propios de cada una y permiten su identificación.
Sustancia
Punto de fusión (ºC)
Punto de ebullición (ºC)
Agua (sustancia)

Los cambios de estado regresivos de la materia son:
• Sublimación regresiva
• Solidificación
• Condensación
1. Sublimación regresiva. Es el cambio de estado que ocurre cuando una sustancia gaseosa se vuelve sólida, sin pasar por el estado líquido.
2. Solidificación. Es el paso de una sustancia desde el estado líquido al sólido. Este proceso ocurre a una temperatura característica para cada sustancia denominada punto de solidificación y que coincide con su punto de fusión.
3. Condensación. Es el cambio de estado que se produce en una sustancia al pasar del estado gaseoso al estado líquido. La temperatura a que ocurre esta transformación se llama punto de condensación y corresponde al punto de ebullición de dicha sustancia. Este cambio de estado es uno de los más aprovechados por el hombre en la destilación fraccionada del petróleo, mediante la cual se obtienen los derivados como la parafina, bencina y gas de cañería.
Ley de la Conservación de la Materia:
Antoine Lavoisier, químico francés, demostró tras largos y cuidadosos trabajos con la balanza, que en las reacciones químicas la masa total del sistema no cambiaba. Este descubrimiento constituyó uno de los logros más importantes de la Química.
La ley puede enunciarse de la siguiente manera:
“En un sistema cerrado, en el cual se producen reacciones químicas, la materia no se crea ni se destruye, sólo se transforma; es decir, la masa de los reactantes es igual a la masa de los productos”.
A + B ----------> C + D
A y B representan compuestos químicos que al reaccionar dan origen a C y D. Los compuestos A y B son los reactantes porque reaccionan para generar los productos C y D. La masa de los reactantes es igual a la masa de los productos.
masa A + m B = m c + m D
Hoy se sabe que la Ley de la Conservación de la Materia o Ley de Lavoisier no es totalmente exacta, ya que en reacciones nucleares puede desaparecer masa, que se transforma en energía.
Masa, Concepto de
La masa es una de las magnitudes fundamentales de la física.
La masa de una estrella
De hecho, muchos fenómenos de la naturaleza están, directa o indirectamente, asociados al concepto de masa.
Un primer acercamiento al concepto de masa se puede expresar al decir que “masa es la cantidad de materia que tiene un cuerpo”.
Entender esa afirmación requiere, sin embargo, conocer el concepto de materia.
Los científicos suelen definir materia como todo aquello que posee inercia, y aquí aparece el concepto de inercia.
Por el momento, solamente diremos que un cuerpo tiene inercia si para modificar su estado, entiéndase como cambiar su movimiento, requiere de que sobre él se aplique una fuerza neta. Una fuerza que tenga un valor distinto de cero.
La fuerza aplicada a una masa
Materia, entonces, al ser todo aquello que posee inercia, sería todo aquello que requiera una fuerza para detenerse o iniciar su movimiento…, ahora aparece el concepto de fuerza.
Por lo visto, para hablar de materia, debemos referirnos, necesariamente, a otros conceptos, pues bien, sigamos con lo más básico entonces.
Una porción de materia, que también vendría a ser una porción de masa, se puede reducir a la más pequeña de sus partículas que la componen, y nos encontraríamos con los átomos. Los átomos son, por el momento, la unidad de la materia. Una materia o una masa cualquiera es –al final de cuentas– una cierta cantidad de átomos (muchos átomos con toda seguridad).
A modo de curiosidad: una persona de 70 kg de masa tendría, aproximadamente: 3,41 x 1028 electrones, 3,41 x 1028 protones y 7,76 x 1027 neutrones.
Ahora, la materia más común que nos rodea está formada por al menos dos tipos de materiales diferentes, que combinados dan origen a una mezcla. Por ejemplo, en la etiqueta de una camisa podemos leer que la tela tiene 70 por ciento y 30 por ciento poliéster. Ahí tenemos una mezcla.
Hombre promedio: 70 kilogramos de masa
Las mezclas pueden ser homogéneas o heterogéneas. Si la materia de la mezcla no está distribuida uniformemente, la mezcla es heterogénea, y si está distribuida uniformemente entonces es una mezcla homogénea.
Una mezcla homogénea puede ser de dos tipos: homogénea propiamente tal, si está compuesta por al menos dos materiales en una distribución uniforme o, una sustancia si la materia que compone a la mezcla es la misma en todas sus partes, en este caso la materia es pura en la naturaleza y ésta puede ser: un compuesto, formado por dos o más tipos de átomos o un elemento, formada por un solo tipo de elemento (corresponde a una materia formada por algún elemento químico, de esos que están en la Tabla Periódica).
Como ven, entender el concepto de masa, no es tan simple, requiere más conocimientos para ser rigurosamente precisos.
Pero, si pensamos que el concepto de masa se va a enseñar a niños pequeños, que les falta aún madurez para su formación intelectual. Entonces debemos hacer algunos supuestos y pasar por alto algunas cosas.

Todas las cosas son masa
A partir de ejemplos de masa podemos llegar. ¿Qué es masa?... casi todas las cosas que nos rodean son masas, algunas masas se pueden ver y otras no se pueden ver.
Una piedra o un ladrillo o una persona, las podemos ver y son masas, el aire no lo podemos ver pero está compuesto de masa, masa compuesta de partículas materiales muy pequeñas, que son imposibles de ver si no usamos un microscopio bien poderoso.
La masa se mide en kilogramos ¿y el peso?
La unidad de medida de masa es el kilogramo, también se usa el gramo, donde un gramo es la milésima parte de un kilogramo (1 gr = 0,001 kg).
En las transformaciones en el universo como traspasos, transporte, transferencia de materia la masa involucrada permanece constante.
La masa es una magnitud medible, la materia aparte de ser algo concreto también se puede expresar como una explicación cualitativa de un cuerpo cualquiera.
Podemos decir características de una materia, por ejemplo, podemos decir que en la naturaleza se encuentra en tres estados posibles, visibles o “sensorialmente” captables: sólido, líquido y gas.
Una materia puede ser dúctil, flexible, rígida, etc., puede ser salada, dulce, etc.
La masa es la medida, en kilogramos o gramos e incluso toneladas, de una cierta cantidad de materia. 1 kilogramo de pan, por ejemplo.
¿Son lo mismo la masa y el peso?
Todos los cuerpos están hechos de materia. Algunos tienen más materia que otros. Por ejemplo, pensemos en dos pelotas de igual tamaño (igual volumen): una de golf (hecha de un material duro como el caucho) y otra de tenis (hecha de goma, más blanda).
Kilogramo patrón
Aunque se vean casi del mismo tamaño, una (la de golf) tiene más materia que la otra.
Como la masa es la cantidad de materia de los cuerpos, diremos que la pelota de golf tiene más masa que la de tenis.
Lo mismo ocurre con una pluma de acero y una pluma natural. Aunque sean iguales, la pluma de acero tiene más masa que la otra.
Ahora, un ejemplo con cuerpos que no sean del mismo tamaño (que tengan distinto volumen):
Un niño de 7 años comparado con su padre de 35 años.
La diferencia es más clara. Es evidente que el pequeño tiene mucho menos masa que su padre.
Ahora bien: pon mucha atención a lo siguiente:

La UNIDAD DE MEDIDA de la MASA es el KILOGRAMO (kg)
La masa se mide usando una balanza
El kilogramo (unidad de masa) tiene su patrón en: la masa de un cilindro fabricado en 1880, compuesto de una aleación de platino-iridio (90 % platino - 10 % iridio), creado y guardado en unas condiciones exactas, y que se guarda en la Oficina Internacional de Pesos y Medidas en Sevres, cerca de París.
Una balaza mide solo cantidad de masa
La masa es la única unidad que tiene este patrón, además de estar en Sevres, hay copias en otros países que cada cierto tiempo se reúnen para ser regladas y ver si han perdido masa con respecto a la original.
No olvidemos que medir es comparar algo con un patrón definido universalmente.
¿Y el peso?
De nuevo, atención a lo siguiente: la masa (la cantidad de materia) de cada cuerpo es atraída por la fuerza de gravedad de la Tierra. Esa fuerza de atracción hace que el cuerpo (la masa) tenga un peso, que se cuantifica con una unidad diferente: el Newton (N).

La UNIDAD DE MEDIDA DEL PESO ES EL NEWTON (N)
Entonces, el peso es la fuerza que ejerce la gravedad sobre una masa y ambas magnitudes son proporcionales entre sí, pero no iguales, pues están vinculadas por el factor aceleración de la gravedad.
Para que entiendas que el concepto peso se refiere a la fuerza de gravedad ejercida sobre un cuerpo, piensa lo siguiente:
El mismo niño del ejemplo, cuya masa podemos calcular en unos 36 kilogramos (medidos en la Tierra, en una balanza), pesa (en la Tierra, pero cuantificados con un dinamómetro) 352,8 Newtons (N).
En la Luna, pesa seis veces menos
Si lo ponemos en la Luna, su masa seguirá siendo la misma (la cantidad de materia que lo compone no varía, sigue siendo el mismo niño, el cual puesto en una balanza allí en la Luna seguirá teniendo una masa de 36 kilogramos), pero como la fuerza de gravedad de la Luna es 6 veces menor que la de la Tierra, allí el niño PESARÁ 58,68 Newtons (N)
Estas cantidades se obtienen aplicando la fórmula para conocer el peso, que es:
P = m . g
Donde
P = peso, en Newtons (N)
m = masa, en kilogramos (kg)
g = constante gravitacional, que es 9,8 en la Tierra (kg.m/s).
Estoy seguro de que todos se sorprenderán con que un niño de 7 años pese 352,8 Newtons, pero en física es así, ése es su peso.
Lo que ocurre es que la costumbre nos ha hecho trabajar desde chicos solo con el concepto de peso, el cual hemos asociado siempre al kilogramo, y nos han habituado a usarlo, sin saberlo nosotros, como sinónimo de masa. Por eso, cuando subimos a una balanza decimos que nos estamos “pesando”, cuando en realidad estamos midiendo nuestra cantidad de masa, que se expresa en kilogramos.
Un tipo de dinamómetro
Lo que hacemos es usar nuestra medición de MASA como si fuera nuestro “PESO” y al bajar de la balanza decimos “PESÉ 70 KILOS” si la máquina marca esa cantidad, pero el PESO REAL SERÁ 686 Newtons (N) (70 por 9,8 es igual a 686).
Lo concreto es que, en el uso moderno del campo de la mecánica, el peso y la masa son cantidades fundamentalmente diferentes: la masa es una propiedad intrínseca de la materia mientras que el peso es la fuerza que resulta de la acción de la gravedad en la materia.
Sin embargo, el reconocimiento de la diferencia es, históricamente, un descubrimiento relativamente reciente. Es por eso que en muchas situaciones cotidianas la palabra peso continúa siendo usada cuando se piensa en masa. Por ejemplo, se dice que un objeto pesa un kilogramo cuando el kilogramo es una unidad de masa.

El dinamómetro

El dinamómetro, el aparato que sirve par cuantificar el peso, está formado por un resorte con un extremo libre y posee una escala graduada en unidades de peso. Para saber el peso de un objeto solo se debe colgar del extremo libre del resorte, el que se estirará; mientras más se estire, más pesado es el objeto.
Así se pesa una masa
El kg es, como hemos repetido, una unidad de masa, no de peso. Sin embargo, muchos aparatos utilizados para medir pesos (básculas, balanzas, por ejemplo), tienen sus escalas graduadas en kg, pero en realidad son kg-fuerza. El kg-fuerza es otra unidad de medida de peso (arbitraria, para uso corriente, que no pertenece al Sistema Métrico, que se conoce también como kilopondio), que es equivalente a 9,8 Newtons, y que se utiliza cotidianamente para indicar el peso de algo.
Esto no suele representar, normalmente, ningún problema ya que 1 kg-fuerza es el peso en la superficie de la Tierra de un objeto de 1 kg de masa, lo que equivale a 9,8 Newtons. Por lo tanto, una persona de 60 kg de masa pesa en la superficie de la Tierra 60 kg-fuerza (o 588 Newtons). Sin embargo, la misma persona en la Luna pesaría solo 10 kg-fuerza (o 98 Newtons), aunque su masa seguiría siendo de 60 kg. (El peso de un objeto en la Luna, representa la fuerza con que ésta lo atrae).ENTONCES:
MASA ES LA CANTIDAD DE MATERIA DE UN CUERPO QUE SE MIDE EN UNA BALANZA, Y SU UNIDAD DE MEDIDA ES EL KILOGRAMO (kg).
PESO ES LA CUANTIFICACIÓN DE LA FUERZA DE ATRACCIÓN GRAVITACIONAL EJERCIDA SOBRE UN CUERPO Y SE OBTIENE CON LA FÓRMULA P = m . g, o BIEN SE MIDE EN UN DINAMÓMETRO (aparato que consiste en un resorte y del cual debe “colgarse” el cuerpo que, en rigor, se está PESANDO), Y SU UNIDAD DE MEDIDA ES EL NEWTON (N).
En la Tierra, entonces, un kilogramo masa es equivalente a un kilogramos fuerza y este último es igual a 9,8 Newtons
Diferencia entre masa y peso
Características de masa
Características de peso
Es la cantidad de materia que tiene un cuerpo.
Es una magnitud escalar.
Se mide con la balanza.
Su valor es constante, es decir, independiente de la altitud y latitud.
Sus unidades de medida son el gramo (g) y el kilogramo (kg).
Sufre aceleraciones
Es la fuerza que ocasiona la caída de los cuerpos.
Es una magnitud vectorial.
Se mide con el dinamómetro.
Varía según su posición, es decir, depende de la altitud y latitud.
Sus unidades de medida en el S.I. son la dina y el Newton.
Produce aceleraciones.
Lo importante es que entiendas el concepto y la diferencia entre PESO Y MASA, aunque siempre sigas “pesándote” y creas que pesas, por ejemplo 50, 55 ó 60 kilos.
Cambios físicos de la materia
Todos los días ocurren cambios en la materia que nos rodea. Algunos hacen cambiar el aspecto, la forma, el estado. A estos cambios los llamaremos cambios físicos de la materia.
Entre los cambios físicos más importantes tenemos los cambios de estado, que son aquellos que se producen por acción del calor.
Podemos distinguir dos tipos de cambios de estado según sea la influencia del calor: cambios progresivos y cambios regresivos.
Cambios progresivos son los que se producen al aplicar calor.
Estos son: sublimación progresiva, fusión y evaporación.

Sublimación progresiva.
Es la transformación directa, sin pasar por otro estado intermedio, de una materia en estado sólido a estado gaseoso al aplicarle calor.
Ejemplo:
Hielo (agua en estado sólido) + temperatura = vapor (agua en estado gaseoso)

Fusión. Es la transformación de un sólido en líquido al aplicarle calor. Es importante hacer la diferencia con el punto de fusión, que es la temperatura a la cual ocurre la fusión. Esta temperatura es específica para cada sustancia que se funde.
Ejemplos:
Cobre sólido + temperatura = cobre líquido.
Cubo de hielo (sólido) + temperatura = agua (líquida).
El calor acelera el movimiento de las partículas del hielo, se derrite y se convierte en agua líquida.

Evaporación. Es la transformación de las partículas de superficie de un líquido, en gas, por la acción del calor.Este cambio ocurre en forma normal, a temperatura ambiente, en algunas sustancias líquidas como agua, alcohol y otras.
Ejemplo. Cuando te lavas las manos y las pones bajo la máquina que tira aire caliente, éstas se secan.
Sin embargo si le aplicamos mayor temperatura la evaporación se transforma en ebullición.

Ebullición.
Es la transformación de todas las partículas del líquido en gas por la acción del calor aplicado.
En este caso también hay una temperatura especial para cada sustancia a la cual se produce la ebullición y la conocemos como punto de ebullición.
Ejemplos: El agua tiene su punto de ebullición a los 100º C, alcohol a los 78º C. (el término hervir es una forma común de referirse a la ebullición).

Cambios regresivos
Estos cambios se producen por el enfriamiento de los cuerpos y también distinguimos tres tipos que son: sublimación regresiva, solidificación, condensación.
Sublimación regresiva.
Es el cambio de una sustancia de estado gaseoso a estado sólido, sin pasar por el estado líquido.

Solidificación.
Es el paso de una sustancia en estado líquido a sólido.
Este cambio lo podemos verificar al poner en el congelador un vaso con agua, o los típicos cubitos de hielo.

Condensación.
Es el cambio de estado de una sustancia en estado gaseoso a estado líquido.
Ejemplo: El vapor de agua al chocar con una superficie fría, se transforma en líquido. En invierno los vidrios de las micros se empañan y luego le corren "gotitas"; es el vapor de agua que se ha condensado. En el baño de la casa cuando nos duchamos con agua muy caliente y se empaña el espejo, luego le corren las "gotitas " de agua.
Ejemplos
"El roce de los esquíes produce fusión de la nieve, formando una capa de agua que favorece el deslizamiento""Si el agua no se evaporara, no tendríamos lluvias"."Los distintos subproductos que se obtienen del petróleo, se logran gracias a la separación de ellos mediante el punto de ebullición."
¿Por qué será que en las calles hay una franja más oscura en el pavimento, cada cierto trecho? ¿Por qué los rieles de la línea de tren tienen una pequeña separación?
Los cambios de volumen se refieren a los cambios que sufre la materia en relación al espacio que ocupan. Por ejemplo, un cuerpo aumenta su volumen si aumenta el espacio que ocupa y, por el contrario, si reduce su volumen significa que disminuye el espacio que ocupa.

Los cambios de volumen son dos: contracción y dilatación.

Contracción.
Es la disminución de volumen que sufre un cuerpo al enfriarse.
Por ejemplo, los zapatos te quedan más "sueltos " en invierno; al poner un globo inflado en un tiesto con agua fría disminuye su tamaño.
La contracción se entiende porque al enfriarse los cuerpos, las partículas están más cercanas unas de otras, disminuye su movimiento y como consecuencia disminuye su volumen.
¿Qué ocurre cuando pones un termómetro en agua con hielo?

Dilatación.
Es el aumento de volumen que experimentan los cuerpos al contacto con la temperatura. Por ejemplo, el Mercurio del termómetro se dilata con facilidad y por eso es capaz subir por un capilar pequeño e indicar el alza de temperatura.
Este fenómeno no afecta sólo a los líquidos o sólidos también a los gases. Al recibir un aumento de calor, las partículas se separan entre sí, permitiendo que el gas se torne más liviano y se eleve. Ejemplo de esto es lo que hace posible que los "globos aerostáticos" se puedan elevar y desplazar.
Pero toda regla tiene su excepción y es el agua en este caso quién confirma la regla, porque al calentarse entre los 0º C y los 4º C, se contrae y al enfriarse se dilata. Se conoce este fenómeno como la dilatación anómala del agua.

Conceptos sobre la materia y la energía
Todo lo que nos rodea, incluidos nosotros mismos, está formado por un componente común: la materia. Normalmente, para referinos a los objetos usamos términos como materia, masa, peso, volumen. Para clarificar los conceptos, digamos que:
Materia es todo lo que tiiene masa y ocupa un lugar en el espacio;
Masa es la cantidad de materia que tiene un cuerpo;
Volumen es el espacio ocupado por la masa
Cuerpo es una porción limitada de materia

Estados físicos de la materia
En términos conceptuales, materia se puede definir como cualquier sustancia que posee masa y ocupa un lugar en el espacio (volumen); la cual como cualquier otro componente de la naturaleza reacciona a factores ambientales como la presión y la temperatura, manifestándose en tres estados:
· Gaseoso.
· Líquido.
· Sólido.
Estos estados obedecen fundamentalmente a la energía cinética o energía de movimiento de las moléculas que conforman dicha materia y a la forma de agregación de las mismas.
Los estados de la materia dependen de Factores del ambiente como presión y temperatura.
Estados de la materia en relación a cambios de la temperatura del ambiente.

Los diferentes estados de la materia se caracterizan por la energía cinética de las moléculas y los espacios existentes entre estas.
Estados de la materia en relación a cambios de la energía cinética de las moléculas.
Cada uno de los estados le confiere a la materia características propias, a pesar de no cambiar su composición.
La figura siguiente complementa los conceptos aquí formulados, obsérvelo haciendo énfasis en las relaciones y diferentes vías existentes:
Los estados de la materia: efecto de las condiciones del medio.
Aunque la materia en sus diferentes estados, no varía en su composición, puede variar en sus características
Principales Características de los estados de la materia
SÓLIDOS
LÍQUIDOS
GASES
Poseen forma definida.
No poseen forma definida, por lo tanto adoptan la forma del recipiente que los contiene.
No poseen forma definida, por lo tanto adoptan la forma del recipiente que los contiene.
Poseen volumen fijo.
Poseen volumen fijo.
Poseen volumen variable.
Baja compresibilidad.
Compresión limitada.
Alta Compresibilidad.
Cambios físicos y cambios químicos
Las modificaciones en la presión, la temperatura o las interrelaciones de las sustancias, pueden originar cambios físicos o químicos en la materia.

Cambios físicos de la materia:
Son aquellos cambios que no generan la creación de nuevas sustancias, lo que significa que no existen cambios en la composición de la materia, como se ve en la figura siguiente.
El cambio físico se caracteriza por la no existencia de reacciones químicas y de cambios en la composición de la materia.

Cambio físico de la materia: cambio de estado sólido (hielo) a estado líquido del agua, mediante el aumento en la temperatura del sistema.
Cambios químicos:
Son aquellos cambios en la materia que originan la formación de nuevas sustancias, lo que indica que existieron reacciones químicas.
El cambio Químico de la materia se caracteriza por la existencia de reacciones químicas, de cambios en la composición de la materia y la formación de nuevas sustancias.
Cambio Químico de la materia: Formación de Ácido Clorhídrico, mediante la reacción de Cloro e Hidrógeno.
Observe que en los cambios químicos la materia sometida al cambio posee unas características diferentes a la materia inicial.

Composición y propiedades de la materia
Como se vio anteriormente, la materia presenta tres estados físicos, dependiendo de factores ambientales como la presión y la temperatura; independiente de ello, el aspecto de la materia está determinado por las propiedades físico-químicas de sus componentes, encontrándose materia homogénea y materia heterogénea.

Materia homogénea
Es aquella que es uniforme en su composición y en sus propiedades y presenta una sola fase, ejemplo de ello sería un refresco gaseoso, la solución salina, el Cloruro de Sodio o sal de cocina; este tipo de materia se presenta en formas homogéneas, soluciones y sustancias puras.

Materia heterogénea
Es aquella que carece de uniformidad en su composición y en sus propiedades y presenta dos o más fases, ejemplo de ello sería la arena, el agua con aceite; este tipo de materia es también conocida como mezcla y se caracteriza por el mantenimiento de las propiedades de los componentes y la posibilidad que existe de separarlos por medio de métodos físicos.

Sustancias puras, elementos y compuestos

Sustancia pura
Una sustancia es pura cuando se encuentra compuesta por uno o más elementos en proporciones definidas y constantes y cualquier parte de ella posee características similares, definidas y constantes; podríamos decir que una sustancia es pura cuando se encuentra compuesta en su totalidad por ella y no contiene cantidades de otras sustancias; ejemplos de ello serían la sacarosa, el agua, el oro.
Elemento:
Sustancia pura imposible de descomponer mediante métodos químicos ordinarios, en dos o más sustancias, ejemplo: el Hidrógeno (H), el Oxígeno (O), el Hierro (Fe), el Cobre (Cu).

Compuesto:
Sustancia pura posible de descomponer mediante métodos químicos ordinarios, en dos o más sustancias, ejemplos: El agua (H2O), la sal (NaCl), el ácido Sulfúrico (H2SO4).

Energía

El movimiento de los constituyentes de la materia, los cambios químicos y físicos y la formación de nuevas sustancias se originan gracias a cambios en la energía del sistema; conceptualmente, la energía es la capacidad para realizar un trabajo o transferir calor; la energía a su vez se presenta como energía calórica, energía mecánica, energía química, energía eléctrica y energía radiante; estos tipos de energía pueden ser además potencial o cinética. La energía potencial es la que posee una sustancia debido a su posición espacial o composición química y la energía cinética es la que posee una sustancia debido a su movimiento.

Tipos de energía
Manifestaciones de la energía
Energía Mecánica: El movimiento de las hélices del molino de viento es transferido a un sistema mecánico de piñones, para producir energía eléctrica o lograr la ascensión de agua de un pozo subterráneo
Energía Calórica o radiante: El calor o la luz emitida desde el sol es aprovechada por las plantas para producir energía química en forma de carbohidratos.
Energía Eléctrica: El movimiento de electrones libres, produce la energía eléctrica, usada para hacer funcionar electrodomésticos, trenes, y artefactos industriales.
Energía Química: La combustión de hidrocarburos como el petróleo, liberan gran cantidad de energía.

Formas de medición de la energía:
Poseer un referente de la cantidad de energía que se intercambia en las diferentes interacciones de la materia requiere de patrones de medición. Como la forma de energía que tiene mayor expresión es la energía calórica, entendida ésta como la energía que se intercambia entre dos sustancias cuando existe diferencias de temperatura entre ambas, trataremos las unidades de medida de esta.
La cantidad de energía cedida o ganada por una sustancia se mide en calorías o joules.
Una caloría (cal) es igual a la cantidad de calor necesario para elevar de 14,5o C a 15,5o C 1 gramo de agua. Como factor de conversión diremos que una caloría equivale a 4,184 joules.
1 cal = 4,184 J

Es necesario diferenciar la caloría utilizada como herramienta de medición de la energía calórica en química, de la caloría utilizada en nutrición, ya que la caloría contenida en los alimentos (Cal) o gran caloría, equivale a 1.000 calorías o 1 Kilocaloría (Kcal).
2 cubos de azúcar ( 10 g), contienen 37,5 Cal nutricionales, lo que equivale a 37,5 Kcal, 37.500 cal químicas y 156.900 j.

Calor especifico
¿Has sentido que unas sustancias se calientan con mayor rapidez que otras?, el calor especifico se relaciona con ello; conceptualmente, el calor específico es la cantidad de calor necesario para elevar la temperatura de una sustancia determinada; desde el punto de vista químico, es la cantidad de calorías requeridas para elevar en un grado centígrado la temperatura de un gramo de una sustancia, o es el número de joules requeridos para elevar en un grado kelvin la temperatura de un kg de una sustancia.
Calor Específico del agua: 1 cal/g o C
Este valor significa que para elevar 1 grado centígrado la temperatura de 1 g de agua, se requiere 1 caloría.
Calor Especifico del Aluminio: 0,217 cal/g o C
Este valor significa que para elevar 1 grado centígrado la temperatura de 1 g de Aluminio se requieren 0,217 calorías.
Valores comparativos del calor especifico del agua en estado líquido y el aluminio en estado sólido.
Ley de la conservación de Masa-Energía
Para concluir esta parte temática, abordemos una pregunta: en el momento de ocurrir un cambio físico o químico (reacción química) en una sustancia, ¿existe perdida de masa y/o energía?
Antoine Laurent Lavoiser (743-1749) y James Prescott Joule (1818-1889), dedicaron parte de su trabajo científico en la solución de este problema, llegando a la conclusión de que en las reacciones químicas y en los cambios físicos las masas de las sustancias participantes no se crean ni destruyen, solo se transforman; esta conclusión se conoce con el nombre de Ley de la conservación de la masa.
En este ejemplo de reacción química, 4.032 g de Hidrógeno gaseoso, reaccionan con 141.812 g de cloro gaseoso, para formar 145.844 g de ácido clorhídrico.
La suma de los reactivos es igual a la suma de los productos.
La masa de los reactivos no se destruyó, estos se combinaron y se transformaron en una nueva sustancia.
Ejemplo de la ley de la conservación de la materia: formación del ácido clorhídrico, mediante la reacción del Hidrógeno con el Cloro.

Energía es vida
Sol
Todo lo que vemos a nuestro alrededor se mueve o funciona debido a algún tipo o fuente de energía, lo cual nos demuestra que la energía hace que las cosas sucedan.
Si es de día, el Sol nos entrega energía en forma de luz y de calor. Si es de noche, los focos usan energía eléctrica para iluminar. Si ves pasar un auto, piensa que se mueve gracias a la gasolina, un tipo de energía almacenada. Nuestros cuerpos comen alimentos, que tienen energía almacenada. Usamos esa energía para jugar, estudiar... para vivir.
Desde una perspectiva científica, podemos entender la vida como una compleja serie de transacciones energéticas, en las cuales la energía es transformada de una forma a otra, o transferida de un objeto hacia otro.
Pensemos, por ejemplo, en un duraznero. El árbol absorbe luz —energía— de la radiación solar, convirtiendo la energía luminosa en energía potencial química almacenada en enlaces químicos. Luego utiliza esta energía para producir hojas, ramas y frutos. Cuando un durazno, "lleno" de energía potencial química, se cae del árbol al suelo, su energía de posición (almacenada como energía potencial gravitacional) se transforma en energía cinética, la energía del movimiento, a medida que cae. Cuando el durazno golpea el suelo, la energía cinética se transforma en calor (energía calórica) y sonido (energía acústica). Cuando alguien se come el durazno, ese organismo transforma su energía química almacenada en el movimiento de unos músculos (entre otras cosas)...
Con las máquinas y las fuentes energéticas sucede lo mismo. El motor de un auto, por ejemplo, transforma la gasolina (que contiene energía química almacenada hace mucho tiempo por seres vivos) en calor. Luego transforma ese calor en, por ejemplo, energía cinética.
¿Qué tienen en común todos los ejemplos que hemos dado? Dos cosas: la transformación (de una energía en otra) y la transferencia (la energía pasa de un objeto hacia otro).
El principio crucial y subyacente en estas series de transformaciones de energía (y en todas las transacciones energéticas) es que la energía puede cambiar su forma, pero no puede surgir de la nada o desaparecer. Si sumamos toda la energía que existe después de una transformación energética, siempre terminaremos con la misma cantidad de energía con la que comenzamos, pese a que la forma puede haber cambiado.
Este principio es una de las piedras angulares de la física, y nos permite relacionar muchos y muy diversos fenómenos. ¿En qué se parecen una pelota de fútbol impulsada por una patada, a la llama de una vela? ¿Cómo podemos comparar cualquiera de ellos con un balón de gas, o con el sándwich que te comiste al almuerzo? La energía cinética de la pelota, la energía calórica de la llama, la energía potencial química del gas y el sándwich pueden medirse y ser todas transformadas y expresadas en trabajo, en "hacer que algo suceda". Este es un paso hacia el entendimiento y la comprensión de la unidad esencial de la Naturaleza.
Fuentes energéticas
En la naturaleza existen diversas fuentes de energía; esto es, elementos o medios capaces de producir algún tipo de energía.
Como fuentes, capaces de producir algún tipo de energía, tenemos algunas que se presentan como agotables o no renovables: el carbón, el petróleo, el gas natural, la fuerza interna de la tierra (fuente geotérmica de energía), los núcleos atómicos (fuente nuclear de energía).
Hay otras fuentes capaces de producir energía y que se presentan como inagotables o renovables.
Tipos de Energía
1.- Energía mecánica.
2.- Energía calórica o térmica.
3.- Energía química.
4.- Energía radiante o lumínica
5.- Energía eléctrica o electricidad.
6.- Energía nuclear.
7.- Energía magnética
8.- Energía metabólica.

Si intentamos una definición de energía, y concordamos en que energía es todo aquello que puede hacer cambiar las propiedades de la materia, en un continuo de transformaciones, entenderemos por qué se llama energía tanto a las fuentes como a los tipos de ella.
Así, se habla comúnmente de energía hidráulica o hidroeléctrica para referirse a la energía eléctrica que proviene de una fuente hídrica (ríos, embalses y, eventualmente, olas), que son tales debido a la energía mecánica almacenada en las aguas, las cuales al moverse o caer transforman su propia energía potencial en energía cinética.
La energía mecánica es la empleada para hacer mover a otro cuerpo. Ésta se divide a su vez en dos energías: la energía potencial (es la que poseen los cuerpos debido a la posición en que se encuentran, es decir un cuerpo en altura tiene más energía potencial que un cuerpo en la superficie del suelo) y energía cinética (es la que poseen los cuerpos debido a su velocidad).
Un tipo de energía potencial muy conocido es el de la energía potencial hidráulica que es la que se obtiene de la caída del agua desde cierta altura a un nivel inferior lo que provoca el movimiento de ruedas hidráulicas o turbinas. En esta categoría podría incluirse también la energía del mar, que se puede obtener del movimiento de sus aguas, ya sea como olas o como mareas.

Energía calórica
Energía calórica o térmica: es la que se trasmite entre dos cuerpos que se encuentran a diferente temperatura. El calor es la vibración de moléculas de un cuerpo. La vibración es movimiento. Unos de los fines para que se utiliza la energía calórica es para causar movimiento de diversas máquinas.
El calor es energía en tránsito, que se hace evidente cuando un cuerpo cede calor a otro para igualar las temperaturas de ambos. En este sentido, los cuerpos ceden o ganan calor, pero no lo poseen.
Todo el calor proviene directa o indirectamente del sol.
Cuando se aprovecha directamente este calor a través de ingeniosos aparatos que lo almacenan y transforman en algún tipo de trabajo, se habla de energía solar.
Los procesos físicos por los que se produce la transferencia de calor son la conducción, la radiación y la convección. La conducción requiere contacto físico entre los cuerpos —o las partes de un cuerpo— que intercambian calor, pero en la radiación no hace falta que los cuerpos estén en contacto ni que haya materia entre ellos. La convección se produce a través del movimiento de un líquido o un gas en contacto con un cuerpo de temperatura diferente.

La energía química es la que generan los alimentos y los combustibles, o, más exactamente, la contenida en las moléculas químicas y que se desarrolla en una reacción química. Conocemos el resultado del alimento en nuestro cuerpo: desarrollamos energía para realizar diferentes trabajos. La energía procedente del carbón, de la madera, del petróleo y del gas en combustión, hace funcionar motores y proporciona calefacción.
La energía radiante o lumínica es aquella que más frecuentemente vemos en forma de luz y que nos permite ver las cosas alrededor de nosotros. Se propaga en todas las direcciones, se puede reflejar en objetos y puede pasar de un material a otro.
La luz proviene de los cuerpos llamados fuentes o emisores. Llena el Universo, emitida por el Sol y por todas las estrellas que son fuentes luminosas naturales (igual como lo son el fuego y algunos insectos como las luciérnagas). Sobre la Tierra, las plantas verdes se mantienen vivas gracias a la energía radiante del Sol, e incluso la vida de los animales —entre ellos el hombre— depende de esta energía. Además de la luz, las ondas de radio, los rayos X, los rayos ultravioleta, son formas de energía radiante invisibles, utilizadas por el hombre.
Existen también fuentes luminosas artificiales (las ampolletas, los tubos fluorescentes y las linternas).
El hombre ha ideado diferentes formas para utilizar la energía luminosa que proviene del sol. Algunas de ellas son los colectores solares y espejos curvos especiales, que se utilizan en calefacción y para generar energía eléctrica. La energía solar tiene la ventaja de no contaminar.

Energía eléctrica (o electricidad): es la que se produce por el movimiento de electrones a través de un conductor. Se divide a su vez en energía magnética (energía de los imanes), estática y corriente eléctrica.
La electricidad es una forma de energía que se puede trasmitir de un punto a otro. Todos los cuerpos presentan esta característica, propia de las partículas que lo forman, pero algunos la transmiten mejor que otros.
Los cuerpos, según su capacidad de trasmitir la electricidad, se clasifican en conductores y aisladores.
Conductores son aquellos que dejan pasar la electricidad a través de ellos. Por ejemplo, los metales.
Aisladores son los que no permiten el paso de la corriente eléctrica.
Centrales eléctricas
Son instalaciones que transforman en energía eléctrica, la energía mecánica que produce una caída de agua (centrales hidroeléctricas), o energía calórica o térmica, que se produce por la combustión de carbón o gas natural (centrales termoeléctricas).
La energía nuclear o atómica es la que procede del núcleo del átomo, la más poderosa conocida hasta el momento. Se le llama también energía atómica, aunque este término en la actualidad es considerado incorrecto. Esta energía se obtiene de la transformación de la masa de los átomos de uranio, o de otros metales pesados.
Aunque la energía nuclear es la descubierta más recientemente por el hombre, en realidad es la más antigua: la luz del Sol y demás estrellas, proviene de la energía nuclear desarrollada al convertirse el hidrógeno en helio.
Energía magnética: es aquella que está en los imanes y se produce porque los imanes están cargados con cargas de electrones, generalmente positivas. Esto hace que si uno acerca algún cuerpo de metal que sea dador de electrones al imán, el primero seda el electrón y quede cargado con una carga opuesta al imán lo que implica la atracción de los cuerpos.
Hoy se conoce la naturaleza del magnetismo y es posible fabricar potentes imanes de distintos tamaños utilizando el acero. Los mejores están hechos de aleaciones de acero especialmente ideadas para mantener las propiedades magnéticas.
Energía metabólica: es aquella generada por los organismos vivos gracias a procesos químicos de oxidación como producto de los alimentos que ingieren.

Máquinas Simples 5.Klasse. Herr Cruz


Máquinas simples

Se denominan máquinas a ciertos aparatos o dispositivos que se utilizan para transformar o compensar una fuerza resistente o levantar un peso en condiciones más favorables.

Palanca para sacar un clavo

Es decir, realizar un mismo trabajo con una fuerza aplicada menor, obteniéndose una ventaja mecánica.
Esta ventaja mecánica comporta tener que aplicar la fuerza a lo largo de un recorrido (lineal o angular) mayor. Además, hay que aumentar la velocidad para mantener la misma potencia.
Las primeras máquinas eran sencillos sistemas que facilitaron a hombres y mujeres sus labores, hoy son conocidas como máquinas simples.
La rueda, la palanca, la polea simple, el tornillo, el plano inclinado, el polipasto, el torno y la cuña son algunas máquinas simples. La palanca y el plano inclinado son las más simples de todas ellas.
En general, las maquinas simples son usadas para multiplicar la fuerza o cambiar su dirección, para que el trabajo resulte más sencillo, conveniente y seguro.

Ejemplos de máquinas simples
Palanca
Conocida máquina simple: la palanca
Una palanca es, en general, una barra rígida que puede girar alrededor de un punto fijo llamado punto de apoyo o fulcro.
La fuerza que se aplica se suele denominar fuerza motriz o potencia y la fuerza que se vence se denomina fuerza resistente, carga o simplemente resistencia.
Polea simple
La polea sirve para elevar pesos a una cierta altura. Consiste en una rueda por la que pasa una cuerda a la que en uno de sus extremos se fija una carga, que se eleva aplicando una fuerza al otro extremo. Su función es doble, puede disminuir una fuerza, aplicando una menor, o simplemente cambiar la dirección de la fuerza. Si consta de más de una rueda, la polea amplifica la fuerza. Se usa, por ejemplo, para subir objetos a los edificios o sacar agua de los pozos.
Las poleas pueden presentarse de varias maneras:
Polea fija: solo cambia la dirección de la fuerza. La polea está fija a una superficie.
Polea móvil: se mueve junto con el peso, disminuye el esfuerzo al 50%.
Polea pasto, polipasto o aparejo: Formado por tres o más poleas en línea o en paralelo, se logra una disminución del esfuerzo igual al número de poleas que se usan.

Polipasto
Esquema funcional de un polipasto
Se llama polipasto a un mecanismo que se utiliza para levantar o mover una carga aplicando un esfuerzo mucho menor que el peso que hay que levantar.
Estos mecanismos se utilizan mucho en los talleres o industrias que manipulan piezas muy voluminosas y pesadas porque facilitan la manipulación, elevación y colocación de estas piezas pesadas, así como cargarlas y descargarlas de los camiones que las transportan.
Suelen estar sujetos a un brazo giratorio que hay acoplado a una máquina, o pueden ser móviles guiados por raíles colocados en los techos de las naves industriales.
Los polipastos tienen varios tamaños o potencia de elevación, los pequeños se manipulan a mano y los más grandes llevan incorporados un motor eléctrico.

Rueda
Máquina simple más importante que se conoce, no se sabe quién y cuándo la descubrió o inventó; sin embargo, desde que el hombre utilizó la rueda la tecnología avanzó rápidamente, podemos decir que a nuestro alrededor siempre está presente algún objeto a situación relacionado con la rueda, la rueda es circular.

Plano inclinado
El plano inclinado permite levantar una carga mediante una rampa o pendiente. Esta máquina simple descompone la fuerza del peso en dos componentes: la normal (que soporta el plano inclinado) y la paralela al plano (que compensa la fuerza aplicada). De esta manera, el esfuerzo necesario para levantar la carga es menor y, dependiendo de la inclinación de la rampa, la ventaja mecánica es muy considerable.
Al igual que las demás máquinas simples cambian fuerza por distancias. El plano inclinado se descubre por accidente ya que se encuentra en forma natural, el plano inclinado es básicamente un triángulo donde su utiliza la hipotenusa, la función principal del plano inclinado es levantar objetos por encima de la Horizontal. El plano inclinado puede presentarse o expresar también como cuña o tornillo.

Cuña
Se forma por dos planos inclinados opuestos, las conocemos comúnmente como punta, su función principal es introducirse en una superficie.
Ejemplo: Flecha, hacha, navaja, desarmado, picahielo, cuchillo.

Tornillo
Plano inclinado enrollado, su función es la misma del plano inclinado pero utilizando un menor espacio.
Ejemplos: escalera de caracol, carretera, saca corcho, resorte, tornillo, tuerca, rosca.

Nivel o torno
Máquina simple constituida por un cilindro en donde enredar una cuerda o cadena, se hace girar por medio de una barra rígida doblada en dos ángulos rectos opuestos. Como todas las máquinas simples el torno cambia fuerza por distancia, se hará un menor esfuerzo entre más grande sea el diámetro.
Ejemplos: grúa, fonógrafo, pedal de bicicleta, perilla, arranque de un auto antiguo, grúa, ancla, taladro manual.

Palancas
El hombre, desde los inicios de los tiempos ha ideado mecanismos que le permitan ahorrar energía y con ello lograr que sus esfuerzos físicos sea cada vez menores.
Entre los diversos mecanismos para hacer más eficientes sus esfuerzos se pueden citar las poleas, los engranajes y las palancas.
La palanca es una máquina simple que se emplea en una gran variedad de aplicaciones.
Probablemente, incluso, las palancas sean uno de los primeros mecanismos ingeniados para multiplicar fuerzas. Es cosa de imaginarse el colocar una gran roca como puerta a una caverna o al revés, sacar grandes rocas para habilitar una caverna.
Con una buena palanca es posible mover los más grandes pesos y también aquellos que por ser tan pequeños también representan dificultad para tratarlos.
Galileo habría "movido" la Tierra
Se cuenta que el propio Galileo Galilei habría dicho: "Dadme un punto de apoyo y moveré el mundo". En realidad, obtenido ese punto de apoyo y usando una palanca suficientemente larga, eso es posible.
En nuestro diario vivir son muchas las veces que “estamos haciendo palanca”. Desde mover un dedo o un brazo o un pie hasta tomar la cuchara para beber la sopa involucra el hacer palanca de una u otra forma.
Ni hablar de cosas más evidentes como jugar al balancín, hacer funcionar una balanza, usar un cortaúñas, una tijera, un diablito (sacaclavos), etc.
Casi siempre que se pregunta respecto a la utilidad de una palanca, la respuesta va por el lado de que “sirve para multiplicar una fuerza”, y eso es cierto pero prevalece el sentido que multiplicar es aumentar, y no es así siempre, a veces el multiplicar es disminuir (piénsese en multiplicar por un número decimal por ejemplo).

¿Qué es una palanca?
Básicamente está constituida por una barra rígida, un punto de apoyo (se le puede llamar “fulcro”) y dos fuerzas (mínimo) presentes: una fuerza (o resistencia) a la que hay que vencer (normalmente es un peso a sostener o a levantar o a mover en general) y la fuerza (0 potencia) que se aplica para realizar la acción que se menciona. La distancia que hay entre el punto de apoyo y el lugar donde está aplicada cada fuerza, en la barra rígida, se denomina brazo. Así, a cada fuerza le corresponde un cierto brazo.
Como en casi todos los casos de máquinas simples, con la palanca se trata de vencer una resistencia, situada en un extremo de la barra, aplicando una fuerza de valor más pequeño que se denomina potencia, en el otro extremo de la barra.
En una palanca podemos distinguir entonces los siguientes elementos:
El punto de apoyo o fulcro.
Potencia: la fuerza (en la figura de abajo: esfuerzo) que se ha de aplicar.
Resistencia: el peso (en la figura de abajo: carga) que se ha de mover.
Brazo de potencia
Brazo de resistencia
El brazo de potencia (b2): es la distancia entre el fulcro y el punto de la barra donde se aplica la potencia.
El brazo de resistencia (b1): es la distancia entre el fulcro y el punto de la barra donde se encuentra la resistencia o carga.
¿Cuántos tipos de palanca hay?
La ubicación del fulcro respecto a la carga y a la potencia o esfuerzo, definen el tipo de palanca
Según lo visto en la figura y lo definido en el cuadro superior, hay tres tipos de palancas:
Palanca de primer tipo o primera clase o primer grupo o primer género:
Se caracteriza por tener el fulcro entre la fuerza a vencer y la fuerza a aplicar.
Palanca de primera clase
Esta palanca amplifica la fuerza que se aplica; es decir, consigue fuerzas más grandes a partir de otras más pequeñas.
Por ello, con este tipo de palancas pueden moverse grandes pesos, basta que el brazo b1 sea más pequeño que el brazo b2.
Algunos ejemplos de este tipo de palanca son: el alicates, la balanza, la tijera, las tenazas y el balancín.
Palancas de primera clase
Algo que desde ya debe destacarse es que al accionar una palanca se producirá un movimiento rotatorio respecto al fulcro, que en ese caso sería el eje de rotación.
Palanca de segundo tipo o segunda clase o segundo grupo o segundo género:
Se caracteriza porque la fuerza a vencer se encuentra entre el fulcro y la fuerza a aplicar.
Palanca de segunda clase
Este tipo de palanca también es bastante común, se tiene en lo siguientes casos: carretilla, destapador de botellas, rompenueces.
Palancas de segunda clase
También se observa, como en el caso anterior, que el uso de esta palanca involucra un movimiento rotatorio respecto al fulcro que nuevamente pasa a llamarse eje de rotación.
Palanca de tercer tipo o tercera clase o tercer grupo:
Se caracteriza por ejercerse la fuerza “a aplicar” entre el fulcro y la fuerza a vencer.
Palanca de tercera clase
Este tipo de palanca parece difícil de encontrar como ejemplo concreto, sin embargo… el brazo humano es un buen ejemplo de este caso, y cualquier articulación es de este tipo, también otro ejemplo lo tenemos al levantar una cuchara con sopa o el tenedor con los tallarines, una corchetera funciona también aplicando una palanca de este tipo.
Palancas de tercera clase
Este tipo de palanca es ideal para situaciones de precisión, donde la fuerza aplicada suele ser mayor que la fuerza a vencer.
Y, nuevamente, su uso involucra un movimiento rotatorio.
Hemos visto los tres tipos de palancas, unos se usan más que otros, pero los empleamos muy a menudo, a veces sin siquiera darnos cuenta, y sin pensar en el tipo de palanca que son cuando queremos aplicar su funcionamiento en algo específico.
En algunas ocasiones, ciertos artefactos usan palancas de más de un tipo en su funcionamiento, son las palancas múltiples.
Palancas múltiples: Varias palancas combinadas.
Por ejemplo: el cortaúñas es una combinación de dos palancas, el mango es una combinación de 2º género que presiona las hojas de corte hasta unirlas. Las hojas de corte no son otra cosa que las bocas o extremos de una pinza y, constituyen, por tanto, una palanca de tercer género.
Otro tipo de palancas múltiples se tiene en el caso de una máquina retroexcavadora, que tiene movimientos giratorios (un tipo de palanca), de ascenso y descenso (otra palanca) y de avanzar o retroceder (otra palanca).
Ley de las palancas
Desde el punto de vista matemático hay una ley muy importante, que antiguamente era conocida como la “ley de oro”, nos referimos a la Ley de las Palancas:
El producto de la potencia por su brazo (F2 • b2) es igual al producto de la resistencia por el brazo suyo (F1 • b1)
lo cual se escribe así:
F1 • b1 = F2 • b2
lo que significa que:
Trabajo motor = Trabajo resistente
Llamando F1 a la fuerza a vencer y F2 a la fuerza a aplicar y recordando que b1 es la distancia entre el fulcro y la fuerza a vencer y b2 la distancia entre el fulcro y el lugar donde se ha de aplicar la fuerza F2. En este caso se está considerando que las fuerzas son perpendiculares a los brazos.
Y es válida para todo tipo de palancas.
Ahora bien, ¿en qué se sostiene la Ley de las Palancas?
En un concepto mucho más amplio, el concepto de “torque”.
Al comentar las características de cada tipo de palanca, dijimos que su uso involucra siempre un movimiento rotatorio. Bien, cada vez que se realiza, o se intenta realizar, un movimiento rotatorio se realiza lo que se denomina “torque”.
Torque es la acción que se realiza mediante la aplicación de una fuerza a un objeto que debido a esa fuerza adquiere o puede adquirir un movimiento rotatorio.
Abrir una puerta involucra la realización de torque. El eje de rotación son las bisagras.
Abrir un cuaderno involucra la realización de torque. El eje de rotación es el lomo o el espiral.
Jugar al balancín es hacer torque. El eje de rotación es el punto de apoyo.
Al mover un brazo se realiza torque. El eje de rotación es el codo.
Dos situaciones excepcionales hay que distinguir:
- Cuando se aplica la fuerza en el eje de rotación no se produce rotación, en consecuencia no hay torque. ¿Se imaginan ejercer una fuerza en una bisagra para abrir una puerta?
- Cuando se aplica la fuerza en la misma dirección del brazo tampoco se realiza rotación, por lo tanto tampoco hay torque. O, mejor dicho, el torque es nulo. Imagínense atar una cuerda al borde de la tapa de un libro y tirar de él, paralelo al plano del libro, tratando de abrirlo.
Ya que mencionamos el caso de situaciones particulares donde el torque que se realiza resulta ser nulo, destaquemos también que el torque es máximo cuando el ángulo entre el brazo y la fuerza a aplicar es un ángulo recto (90º y 270º). Otros casos, donde el ángulo entre la fuerza aplicada y el brazo no es ni recto ni nulo ni extendido (0º o 180º) necesitan de matemática que en estos momentos no están al alcance.
El lector más avanzado puede trabajar con el concepto, matemático, de torque como igual al producto entre la fuerza aplicada, la longitud del brazo y el seno del ángulo que forman la fuerza aplicada y el brazo.
Rueda
La rueda tuvo en el arte de los pueblos antiguos un significado simbólico: atribuida, por ejemplo, a la fortuna o a Némesis, significaba la rapidez con que se suceden las vicisitudes del destino humano.
En el budismo, la rueda es uno de los tesoros del rey justiciero que gobierna con equidad, y por esto la rueda simboliza la justicia. La rueda en las pinturas budistas es emblemática y se basa en una leyenda.
Historia
El conocimiento de la rueda, una de tantas invenciones que han tenido un valor esencial y han sido condición necesaria en el progreso humano, se pierde, como casi todas ellas, en lo remoto del tiempo.
De acuerdo con el historiador norteamericano J.K. Bridges, la invención de la rueda ocurrió por el año 4000. A partir del descubrimiento del fuego, el hombre obtiene fortaleza y estimulo, que cambiara su forma de vida, siente necesidad de desplazarse mas allá de su radio de espacio limitado y surgió el trineo hacia el 9000 antes de Cristo, era un trineo simple que consistía de una plataforma elaborada con trozos de madera unidos y empujada o arrastrada por bestias.

La primera rueda o referencia de ella, localizada hasta hoy, data del año 3250 antes de Cristo en la región de Mesopotamia, de aquel primer trineo, se evoluciono a otras formas y surgieron los carros, primero con 2 ruedas y luego 4 hasta lo que hoy conocemos y desde allí la siempre presencia de la rueda, definitivamente el desarrollo del hombre se debe y seguirá unido a la rueda.
Según Reuleaux, otro investigador, el origen de todas las ruedas hay que buscarlo en las de carruaje derivadas del rodillo de arrastre por rodadura, máquina trascendental que ya en épocas antiguas permitió el desplazamiento de grandes moles pétreas, y cuyo probable y natural antecesor fue un simple pedazo rollizo de leña recto.
El movimiento de rotación, que preeside la mecánica cósmica y que se manifiesta en el giro del rodillo, parece ser el primero, de los de trayectoria regular ó geométrica, que el hombre obtuvo valiéndose de aparatos y dispositivos apropiados: sus primeras aplicaciones de orden práctico se realizaron, sin duda, en la honda y en la varilla giratoria empleada para producir el fuego entre los pueblos primitivos y que todavía se puede encontrar en la India, aunque confinada a ritos y liturgias.
En la iconografía de los pueblos primitivos se da la curiosa circunstancia de que países sumamente alejados adoptaron como símbolo del sol y de la divinidad solar ruedas de disco lleno o de cuatro radios y aun a veces más.
En los monumentos asirios se hallan ruedas provistas de grandes alas, emblema parecido al adoptado en nuestros días para simbolizar el ferrocarril. Otras veces las ruedas muestran tres piernas que desbordan el cerco.
En los monumentos rúnicos, la rueda significa la noche sagrada, el día del nacimiento del sol.
Con el Cristianismo conserva la rueda primitivamente su valor de atributo de la divinidad, pues en los viejos templos siríacos se encuentra en dibujos y esculturas, como cruz de gloria y a modo de nimbo, en la cabeza del Crucificado. Duante la Edad Media los místicos y los alquimistas otorgan a la rueda nuevas virtudes insospechadas.
En lo que respecta a las ruedas de carruaje, lógicamente, y por las que hoy se usan en los vehículos de los pueblos no industrializados, cabe afirmar que la rueda de disco, de plato o de centro lleno precedió durante un periodo secular a la rueda de radios.
Fuera de los transportes, se emplearon ya desde muy antiguo ruedas elevadoras, destinadas a los riegos y movidas por el mismo impulso de la corriente de donde tomaban las aguas. En China no es raro encontrar todavía ruedas de esta clase cuyo modelo original data de millares de años.
Estas ruedas, armadas con troncos de bambú, tiene una disposición que acusa una notable intuición mecánica, los tubos inclinados que se hallan distribuidos en la periferia obran a modo de paletas cuando se hallan sumergidos en la corriente y llegando a la parte superior, vierten en una canaleta de madera el agua recogida.
Persia, y Babilonia conocieron ruedas elevadoras que funcionaban según el mismo principio mecánico.
Es igualmente de origen antiquísimo el empleo de ruedas para elevar aguas a fuerza de brazos o valiéndose de animales domésticos, así como el uso de ruedas hidráulicas para transformar en energía mecánica, o, como se dice, en fuerza motriz la energía potencial de las aguas acumuladas en un nivel alto de energía cinética de las corrientes fluviales.
Muchos de estos aparatos fueron conocidos por Herón de Alejandría y Marcos Vitrubio (el genial constructor de la Roma de los Césares); pero es sobre todo en las traducciones que de las obras de estos autores se publicaron durante el Renacimiento, ampliadas, con múltiples apéndices, donde se encuentran las máquinas más curiosas y disparatadas, formadas por combinación de ruedas hidráulicas.

sábado, 21 de marzo de 2009

¡Bienvenidos al blog!

¡Hola a todos!
Soy la Frau Henríquez (Miss Javi) y estoy muy contenta de usar este blog para poder escribirles y contarles de sitios web que nos pueden servir para aprender más de la naturaleza y de todo lo que nos rodea.
Para mis alumnos y alumnas de 2º básico, les cuento que hay dos direcciones en internet para que las visiten:
En estas páginas, aprenderán acerca de dos instituciones que se encargan de cuidar y proteger nuestra flora y fauna. ¡Es muy interesante!

miércoles, 18 de marzo de 2009

FRAU CANEO

Soy la frau de ciencias de 1º y 4º básico.
Bienvenidos a nuestro blog.

Saludo de Bienvenida

Queridos Alumnos y alumnas del Colegio Alemán de San Felipe, este año nuestro blogspot, será compartido por los compañeros desde 1. Klasse a 6.Klasse, este año se integran las profesoras: Krist Caneo, Javiera Henríquez, Gabriela calderón, ellas también subiran información a nuestras páginas, dando mayor riqueza a nuestras actividades.

Un Afectuso Saludo
Herr Cristian Cruz Alfaro